Software-defined Load Balancing for VMware Environments

CHALLENGES FOR VMWARE ENVIRONMENTS

Enterprises wanting to automate L4-L7 services and enable self-service for their developers find that appliance-based load balancers slow down application rollouts, cause overprovisioning, and increase their operational costs. IT teams lack comprehensive visibility into the end-user experience and application performance. Legacy application delivery controllers (ADCs) offer little more than traffic counters; they lack analytics and insights, which makes troubleshooting application problems slow and complex. These legacy solutions also lack native integration with VMware vCenter, making it complex to deploy and manage applications, requiring manual virtual machine setup and networking configuration.

MODERNIZE LOAD BALANCING WITH AVI VANTAGE

The Avi Vantage Platform is built on software-defined architectural principles delivering the flexibility and simplicity expected by IT and lines of business. Unlike legacy ADCs, which carry forward the disadvantages of their hardware appliances into their virtual software balancers, Avi Vantage separates the data and control planes to deliver application services in on-premises or cloud environments. This provides a centrally managed dynamic pool of load balancing resources for individual applications. Native integration with VMware vCenter automates configuration and deployment of application delivery, analytics, and autoscaling services.

BENEFITS

• 100% REST APIs enable policy-driven self-service for app developers and automation for IT administrators.
• For security, Avi Vantage offers insights to enforce L4-L7 policies, pinpoint, mitigate DDoS attacks, and microsegment container apps.
• On-demand autoscaling of load balancing and application resources eliminates the need for overprovisioning, lowering TCO by more than 50%.

Figure 1: Avi Vantage Integration with VMware
In a VMware environment, the Avi Controller (control plane) runs as a virtual machine on VMware ESX servers and integrates seamlessly with VMware vCenter to automate service provisioning and placement, thereby eliminating extensive change-management cycles. With significantly reduced operational complexity and consumption-based subscription pricing, Avi Vantage reduces the total cost of ownership by more than 50 percent (See Figure 1).

Native integration with VMware vCenter automates configuration and deployment of application delivery and analytics services. Network administrators can dynamically configure VIPs by discovering the networks, pool members, and servers that Avi Vantage load balances. Direct integration with vCenter also enables IT administrators to use real time traffic triggers for application autoscaling by spinning up (or spinning down) VMs for application components (See Figure 2).

Figure 2: On-Demand Autoscaling for VMware Environments

KEY LOAD BALANCING CAPABILITIES FOR VMWARE ENVIRONMENTS

30-second Load Balancer:
Integrates with VMware vCenter to:
- Discover networks, pool members, and server configurations from vCenter
- Spin up/down load balancers by querying vCenter images
- Horizontally autoscale load balancers

Multicloud Load Balancing:
Infrastructure-agnostic load balancing supports:
- Multiple hypervisors in an environment
- Multicloud deployments across public and private clouds
- Distributed data plane to deploy load balancers close to applications

Multitenancy:
Provides complete isolation to:
- Prevent service disruptions across multiple tenants
- Deploy load balancers per-application
- Deploy distributed load balancers and manage centrally

Pinpoint Analytics:
End-to-end traffic visibility delivers:
- Real-time insights into network traffic
- Network-DVR capabilities to record-and-replay network incidents
- Rapid troubleshooting in under a minute

Predictive Autoscaling:
Autoscales resources to support:
- Zero-touch scaling via rate thresholds without requiring manual configurations
- Load balancer autoscaling on VM tier with vCenter APIs
- Trigger autoscaling of applications based real time traffic patterns